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DEGRADATION IN PERFORMANCE OF ADAPTIVE
NULL-STEERING ANTENNAS

INTRODUCTION

This report quantifies the degradation in the overall main beam gain performance capability of any
phased array antenna which necessarily accompanies the formation of pattern nulls in a number of
directions. The adaptive formation of pattern nulls constitutes one strategy through which a radar may
seek to suppress effects of stand-off jammers. However, an array comprising a finite number of ele-
mentary radiators disposes of only a finite number of degrees of freedom. Thus it has long been recog-
nized that as the number of nulls required approaches the number of degrees of freedom, antenna per-
formance deteriorates. Here, this fact is given a simple quantitative formulation very much in accord
with our intuitive expectation.

PERFORMANCE

The primary function of a phased array antenna is to form a high-gain beam along any direction
within some (limited) scan volume. From this standpoint, the performance of a phased array is sum-
marized by the envelope gain function of the array Gmax(fl); other pattern characteristics such as
(peak) sidelobe level are not considered here. This function specifies the maximum realizable gain
from the complete array in any given direction Q-(0,4), when the elements of the array are excited
by real generators matched to their waveguide leads with optimum amplitude and phase for gain in that
particular direction. The envelope gain function is, of course, quite different from the conventional
array gain-pattern function corresponding to any one particular scan angle, i.e., fixed distribution of
excitation. Figure 1 contrasts the gain envelope and conventional gain-pattern functions. Under certain
conditions, we can relate the number of antenna elements in the array and array performance as speci-
fied by the envelope gain function [1,21.

GAIN ENVELOPE TYPICAL ARRAY GAIN
FUNCTIONS

FUNCTION Gle) if)

Fig. I - Schematic representation of gain-envelope
function and typical antenna array gain functions for
fixed scan angles (fixed excitation)

SCAN ANGLE, Q --O, 4
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WALTER K. KAHN

We assume the elementary antennas of the array to be essentially lossless (Lorentz) reciprocal
components; dissipation occurs only in the internal impedance loads of the generators exciting each
antenna (or feed network). See Fig. 2. Further, we shall assume that at any given operating frequency:

* a fixed total available power can be distributed arbitrarily among the individual radiating ele-
ments,

* each element is equipped with a phase shifter;

* in any given direction, all elementary antennas radiate fields with the same polarization.

The last assumption permits us to use scalar theory. Although there is no requirement that all the ele-
mentary antennas be otherwise similar, this is normally the case. This then assures that the third
assumption is satisfied, at least to first order. The third assumption is valid exactly if the elementary
antennas have identical field patterns in the open-circuited array environment.

Under the foregoing conditions, we may show [see appendix] that

where

N = - ' f fr G (ea) MQ') d ft',

scan volume

N is the number of elements in the array;

,q is the average element efficiency;

Gmax (f ) is the maximal gain-envelope function;

fl is the bearing in space equivalent to the spherical coordinates 0,4; and

dfl is the differential element of solid angle (sin O)de do.

The average element efficiency [3,4] is given by

71 = N A 71m M

(2.1)

(2.2)

where rem, the efficiency associated with the mth element of the array, is the ratio of the power radi-
ated from the entire array when only the mth element is excited to the power available from the gen-
erator exciting that mth element.

(1)

(2)

(3)

(N)

(1)

(2)

(3)

IN)

I-v)
u.a:
)0<

-r uJ
~Uj
m-Z<,
CCWu

Fig. 2 - Arbitrary incident wave excitation at N - I ports of the
transparent feed network S maintains the null in direction n I
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The element efficiency just defined is a measure of mutual coupling.

Pm (radiated) Pm, (available) - Pm (reflected)

7gMm Pm (available) Pm, (available)

N
= I- I ISnm 12. (2.3)

n=I

The coefficients S,,,, are the normalized scattering coefficients describing coupling among the elements
of the array.

N
bn = A Sn,, am (2.4a)

m=l

2 +/Ra, = Vm + Zg Im (2.4b)

2,fKbm = Vm - Zg /m (2.4c)

Zg = Rg + jXg. (2.4d)

Evidently the stronger the mutual coupling the smaller the element efficiency a. The smaller the
element efficiency, the larger is the number of antenna array elements N required for a given gain
envelope performance. It is remarkable that the number of antenna elements required does not ex-
plicitly depend on the gain functions of these individual array elements, and (since 7 ( 1) that there
exists an absolute minimum value of N.

EFFECT OF THE NULL-FORMING CONSTRAINT

Consider a specified antenna array where the gain performance is summarized by the gain
envelope function G (e) (). This particular array then must comprise N

N 4 1 ff G (e)( ) df l (3.1)

elementary antennas. We now propose to employ this relation, in reverse as it were, as a constraint
governing the performance of the array under the assumption that the array must form nulls in certain
prescribed directions.

Suppose that a radiation null is demanded in the direction 1 =_ (01,4)i). We will construct a
transparent 2N-port network which, when connected in tandem with all the elements of the array, will
effect the following result: arbitrary excitation of the array at N-i of the input ports to this network
will maintain the prescribed null. A lossless reciprocal 2N-port network has been termed "transparent"
when waves incident at one set of N ports do not cause reflected waves to emerge at any of those N
ports. Let f, (M I) be proportional to (a component of) the far field in the direction fl I obtained when
the nth element of the original array is excited by a unit incident wave amplitude, a, = 1, in the
environment of all the remaining elements terminated in loads, Zg.

If necessary, we add lengths of transmission line at any port so that the generally complex quanti-
ties f,1 (l")M are all real and positive. The fnl)(fl) can be ordered into a column vector f(l)
(a denotes the transpose):

p)' = kfal) (O 1t) f(Ql) ) .. fN(l) M1 (3.2)
As shown in the appendix, an excitation of the array with incident wave amplitudes proportional to 0(t)
realizes the maximum gain in the direction fl obtainable with given array and given real generators.
Any excitation of the array orthogonal to 0) preserves a null in the direction fi
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The transparent network that physically separates out N-1 ports that may be excited by arbitrary
incident waves without disturbing the null in the direction 0 I is constructed as follows. Form the vec-
tor

By means of the Gram-Schmidt process, provide N-1 additional orthornormal vectors hl), ...

hN() spanning the subspace orthogonal to h and define the transformation matrix

TI - [h h2' ... h ()J. (3.4)

The scattering matrix 0 T l

SI = t - -- -: - - -- | (3.5)
TI 0

then clearly represents a lossless reciprocal 2N-port which, on account of the properties associated with
zero submatrices on the principal diagonal, has been termed "transparent." Ports N + 1 to 2N are to be
connected to antenna elements 1 to N, respectively. By this construction, shown in Fig. 2, arbitrary
excitations of ports 2 to N of the transparent network (i.e., no excitation at port 1) will preserve the
required null.

Using the realized gain functions corresponding to excitation of these same ports 2 to N, we com-
pute a modified gain-envelope function

GI(e) (f) < G(e) (n). (3.6)

The essence of this analysis is to observe that this new gain envelope function must satisfy the integral
constraint

N-i> 1 GI( ')dfl'. (3.7)

scan volume

It is important to observe that q < 1, which accounts for the mutual coupling present in the originally
specified array, is unaffected (invariant) when the array is cascaded with a transparent 2N-port network.
This is demonstrated in the appendix of this report.

Suppose now that in addition a second null, in the direction f 2 (02, 2) is required. Let
f,( 2 )(Q 2) be proportional to a component of the far field radiated in the direction f12 when the nth port
of the transparent network found above (Fig. 2) is excited by a unit incident wave amplitude.

If necessary, we again add lengths of transmission line at any port such that the generally complex
quantities f(2) (f 2 ) are all real and positive. It is possible (though unlikely) that

[f I (Q 2) f 2 (Q 2) ... fNj2) (Q N)| (3.8)

is of the form

I f(2)(fl 2 ) 0 0 ... 01,

i.e., a null in the direction f2 is automatically assured by excluding excitation at port 1.

In the more likely general circumstance,

f(2) 0 [f (2) 2) (Q3) . . . fN(2) ((12)1 (3.9)

is not the zero vector, and excitation proportional to f(
2

) realizes the gain GIe) (Q12) in the direction (12.
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We now form the vector
h(2) = f(2) (j( 2 )f)-i (3.10)

Using the Gram-Schmidt process, we again provide N-2 additional orthonormal vectors
h(2) h(2), ... , h(2) spanning the subspace orthogonal to that spanned by hj~'), h12), and define the
transformation matrix

T2= [81 h (2) h12) ... I (3.11)

The vector 8, has an nth element equal to unity, and all other elements are zero. The scattering
matrix

0 
S2 = - - --- (3.12)

T2 0

represents a transparent 2N-port network. Actually 2N-port notation is retained only for convenience
in bookkeeping associated with port numbers. The AI row and 8A column appearing in T2 and T2 are
simply interpreted as requiring no further connection to port number 1 of the first transparent 2N-port.
Effectively, a new 2(N-1) port is connected to the array. Figure 3 shows the result. By construction,
arbitrary excitation of ports 3 to N of the second transparent network (i.e., no excitation at ports 1 and
2) will preserve the required two nulls. Using the realized gain functions corresponding to excitations
of these N-2 ports, we compute a further modified gain envelope function

G (e) (ft) < G(e) (() (3.13)

that satisfies the constraint

N-2 > 4 1 ff G(e)(n')dfl'. (3.14)

scan volume

(1) (a1)

(2) (2)

(3) (3) ua

(N) >aN

S S 1 S2

Fig. 3 - Arbitrary incident wave excitation at N -2 ports of the transparent feed network
S2 maintains the nulls in directions n I and fl2

Evidently this process can be repeated for additional prescribed nulls. Should it be repeated N
times, the effect on array performance would clearly be catastrophic.

However, at every intermediate iteration of this process, the number of ports that can be excited
while maintaining the prescribed (independent) nulls is reduced by one. Thus M independent
prescribed nulls effectively reduces an N element array to an N-M array of elements (ports) that can

5



WALTER K. KAHN

be arbitrarily excited. Consequently the gain envelope for the array, constrained to retain the
prescribed nulls, must satisfy

N-M) fJr G~p(r')d('. (3.15)

scan volume

The gain envelope (performance) Gme), on the average, is therefore necessarily reduced relative to the
performance attainable without null constraints (2.5).

CONCLUSION

It has been shown that the requirement for an N-element array antenna (adaptively) to form nulls
in a number of directions (1j, (12, .-- , QM M < N, necessarily degrades the achievable performance
on the average from the array. The qualification "on the average," of course, refers to the integral
nature of the constraints (3.15).
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Appendix

DEFINITION AND PHYSICAL SIGNIFICANCE
OF ELEMENT EFFICIENCY

The efficiency of the mth elementary antenna within the environment of an entire array of N ter-
minated lossless antenna elements may be defined [All as

Pm (radiated) Pm (reflected) (Al)
-Pm (available) Pm (available)

where Pm (radiated) is the power radiated into space when the mth element only is excited, Pm (avail-
able) is the power available at the mth element, and Pm (reflected) is the power reflected back into the
single excited element plus the power reflected (coupled) into all the remaining array elements that are
not excited. Since for power per steradian P(1) at any angle bearing ( - (0,O) the gain functions,
the directive gain gd, and the realized gain g, are, respectively, [All

gd(0) =47T P.) (A2a)
P (radiated)

gr((1) = 4 P(available) (A2b)

and one has, for the mth element,

grm((1) (A3)

Finally, when the coupling among the elements of the array is described at some fixed frequency
by a normalized scattering matrix S = [Snm], relating incident-wave amplitudes am to corresponding
reflected-wave amplitudes b, at each antenna port,

N
b,= Snm am, m = 1,2,... ,N (A4)

m=1

the efficiency of the mth element given in Eq. (Al) may be written as
N

'I.= 1 ISnm 12. (A5)
n=1

The maximum gain attainable from the complete array in any given direction (', when elements
are individually excited by matched generators in the optimal fashion to yield the maximum gain in that
direction, is given in terms of realized gain of the individual elements [A2] by

N
Gmax(n') = A grm(). (A6)

m=1

This is most readily verified as follows. By definition the realized gain of the array in the direction 0o
is

N
I X fm((1o)amI 2

P (available)/47r (A7)

where the reference planes have been chosen so that the fn((1 ) = g,~((1o) are real and positive.
The numerator may be considered as the scalar product of two vectors f a which is maximized when a
is parallel to f. Setting

am = a fm(o - (A8)

7
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we have
N N

P (available) = Y, Ia,,I= 1a12 II Ifm( 0) 12 . (A9)
m=I m=l

Substituting in Eq. (A7) we obtain Eq. (A6). The mean value of Eq. (A6) averaged over all angles (1'
in space yields

4r ff Gmax((')d' = N -.- (A10)
sphere m-I

Thus, in terms of the mean efficiency averaged over all the elements in the array [A21,

7= m-l (A1)

one finds that

N = 4 ff Gmax((')dd*'. (A12)

This provides a valuable estimate of the number of antenna elements that are required to realize a
desired "gain envelope" for an array. Although the actual value of 71 for a particular array may not be
known, an upper bound may be established. Such upper bounds on 71, termed "ideal" efficiencies zj,
have been computed for circular cylindrical arrays [A3] and various regular infinite linear and planar
arrays [Al, A4]. In these two array configurations all elements occupy equivalent positions, and, there-
fore, by symmetry, q7 m = q, for all m. The tabulated values of the bound qi may be inserted in Eq.
(A12) to obtain a minimum estimate for N.

Finally, if the array with scattering matrix S= [Smn] is connected in tandem with a transparent
2N port

01 T
S: - - - - -(A13)

T 0

where T is a real orthogonal matrix, T-1 T', then the scattering matrix at the input to the resulting
network is S'= TST. The average element efficiency 17 is given by the matrix expression [A2]

71= 1 trace {S)S), (A14)

where S+- S* This trace is invariant under the transformation of S to S'; in fact
S AS'= (TST)W 1ST = TS+ TTST = S+S.
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